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Abstract. We develop quantum models for the combined external and internal motion of atoms in a
strongly coupled driven cavity mode including the transverse degrees of freedom. Using a simplified
Gaussian mode function we determine the parameter regimes and prospects of 3D cooling and confinement
of one or two atoms in the cavity field. Analysing the field dynamics for slow atoms traversing the cavity,
we show that the spectrum of the transmitted and spontaneously scattered light contains ample informa-
tion on the motional dynamics of the atom and can be nicely used to investigate the cooling properties of
the system. Including several atoms in the dynamics we show how motional correlations build up by the
common interaction with the cavity field. This can be looked upon as collisions at far distance and can be
monitored via the transmitted field dynamics.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 42.50.Vk Mechanical effects of light on atoms,
molecules, electrons, and ions – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

With recent advances in optical cavity technology and
laser cooling of neutral atoms, experimentalists can now
reach the strong coupling limit of a single atom and a sin-
gle optical field mode. The atom-field coupling strength g
is much larger than the involved decay rates of the atom
Γ and the field mode κ [1–3]. By slowing down the atom
to velocities of only a few recoil momenta ~k long inter-
action times can be achieved [3,4]. Hence similar to the
microwave regime [5] almost ideal representations of the
Jaynes-Cummings model [6], a paradigm of quantum op-
tics, are available. In contrast to Rydberg atoms used in
micromasers, in the optical domain atoms in their ground
state can be used, so that there are no fundamental lim-
itations from the atomic lifetimes. In addition the cavity
photons can be directly detected outside the resonator.
At the same time mechanical effects [7] of the intracavity
fields (as e.g. photon recoil and optical potentials) on the
atom get more important and influence the atomic trajec-
tories in the cavity field eventually accelerating and heat-
ing the atom. The dynamics of course strongly depends
on the detunings and pump strengths used. Interestingly
even for less than a single photon inside the cavity on
average, significant light forces are predicted close to res-
onance [8–11]. Some features of this interaction have also
been experimentally observed [3]. In many cases this is
rather unwanted as light induced heating rapidly expells
the atom from the interaction region [12,13]. In contrast to
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this we have shown in some recent work, that under suit-
able conditions the combined atom-field dynamics can also
be exploited to cool the atom and sometimes even trap it
close at an antinode of the field mode, exactly where the
atom-field coupling is maximal [10,11]. This allows very
long effective interaction times with the strongest possible
coupling.

So far most considerations, however, have been con-
fined to a quasi 1D case, where the fields are approxi-
mated by simple plane waves and only the atomic motion
parallel to the wave vector is investigated. As the cavities
used experimentally are rather tiny and possess spherical
mirrors, the actual field modes have a small transverse ex-
tension (waist) and cold atoms entering from the side pre-
dominatly move at almost right angle to the wave vector.
In this work we now generalize the model to 3D using a
Gaussian transverse mode profile. This allows us to thor-
oughly study the combined atom-field dynamics for slow
atoms traversing the cavity from the side and check the
conditions for which atoms could be slowed down and
trapped at mode field maxima in 3D. Naturally a central
point in this discussion concerns the coupling of radial and
longitudinal motion, which in general are governed by very
different time scales.

Of course, besides calculating the dynamics itself, a
question of almost equal importance is to look for the
possibility of observing and interpreting it. In the opti-
cal domain one has the advantage that the transmitted
cavity field as well as the incoherently scattered photons
can be directly observed and analysed. Hence one gets
real time information on the coupled atom field dynamics,
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which of course can also be used for feedback (see e.g.
atomic juggling [14,15]). Going beyond previous work we
now also calculate the spectral properties of the trans-
mitted and scattered light and show that the spectrum
directly relates to the cooling and trapping properties of
the system.

As a further extension to previous work [11], we gen-
eralize the model to more than one atom. As both par-
ticles are coupled to the same mode, which they influ-
ence through their motion, the atoms will interact with
each other and their motions get correlated. Hence the dy-
namics strongly deviates from independent atom models,
where the effect of all atoms are just summed up to give
a single effective atom of stronger coupling. From a differ-
ent perspective this atom-atom coupling can be viewed as
a toy model for dipole-dipole coupling and light induced
collisions at far distance, avoiding the near distance di-
vergencies and other problems of dipole-dipole coupling.
This coupling to a common mode has also some surprising
consequences for the combined internal atomic dynamics
as it has been discussed previously in context with the
superradiant laser [16,17] or the construction of quantum
gates [18].

Effects of collective interactions between atoms and
a high-Q cavity mode have also been investigated by
Bonifacio et al. and Grynberg et al. [19,20] in the con-
text of the collective atomic recoil laser (CARL). They
show that in the regime of relativistic atomic motion such
a system can be used as a generator of coherent radiation.
However in our work we will deal exclusively with very
slow (cold) atoms.

Let us further point out here that our considerations
should also be relevant for the dynamics of ions in a linear
trap with a high-Q cavity along the trap axis [21–23]. As
the longitudinal confinement of the ions is rather weak,
cavity induced forces could play a crucial role if one tries
to reach the motional ground state.

2 Model

We consider a two-level atom of resonance frequency ω0

and mass m interacting with a single damped cavity mode
with frequency ωc that is weakly pumped with an ampli-
tude η. The cavity mode is coupled to a reservoir that
accounts for the cavity losses κ. In addition the atom is
coupled to the free-space modes not encompassed by the
cavity resulting in a spontaneous decay rate Γ .

The master equation describing our system reads
(in an interaction picture with respect to the pump-
frequency ωP)

ρ̇(t) = − i
~

[H, ρ(t)] − κ
(
a†aρ(t)− 2aρ(t)a† + ρ(t)a†a

)
− Γ

(
σ†σ−ρ(t)− 2σ−ρ(t)σ† + ρ(t)σ†σ−

)
with

H = −~∆ca
†a− ~∆aσ

†σ− + ~g(x)
(
σ†a+ a†σ−

)
− i~η

(
a− a†

)
(1)

∆c = ωP − ωc, ∆a = ωP − ω0.

Here a and a† are the annihilation and creation op-
erators of the cavity mode with commutation relation
[a, a†] = 1 and σ−, σ+ denote the usual lowering and rais-
ing operators of the two-level atom. Furthermore g(x) is
the atom-cavity coupling depending on the atomic posi-
tion. In the following we set ~ = 1.

If the cavity is very weakly driven, we have at most
one quantum of excitation in the system: either there is
one photon in the cavity and the atom is in the ground
state or there is no photon in the cavity and the atom is in
the excited state. Therefore the relevant Hilbert-space is
restricted to the 3 states {|g, 0〉, |g, 1〉, |e, 0〉} where |g〉, |e〉
denote the atomic ground and excited states and |0〉, |1〉
the states with zero and one photon in the cavity mode. It
follows immediately that 〈σza〉 = −〈a〉 and all expectation
values factorize, e.g. 〈a†a〉 = 〈a†〉〈a〉.

By use of the master equation we obtain the follow-
ing equations for the one-time expectation-values of the
system operators in the Heisenberg picture:

〈ȧ(t)〉 = (i∆c − κ)〈a(t)〉 − ig(x)〈σ−(t)〉 + η,

〈σ̇−(t)〉 = (i∆a − Γ )〈σ−(t)〉 − ig(x)〈a(t)〉. (2)

The coupling between atom and cavity is position-
dependent, which is important to study the influence of
atomic motion on the dynamics of our system. In the
following we use a semiclassical approach insofar as the
atomic position and velocity are not quantized and enter
our equations in form of parameters only.

3 Motion of a single particle in a Gaussian
mode: Good cavity limit

3.1 Longitudinal motion

In the limit of a very good cavity (κ � Γ, g) one can as-
sume the internal atomic dynamics to be much faster than
the cavity dynamics. Accordingly one replaces the atomic
operators by their stationary values. By the standard pro-
cedure of adiabatic elimination of the excited atomic state
we obtain the following equations in the good-cavity-limit
(with 〈a〉 ≡ α and p denoting the atomic momentum):

α̇ = (−κ− γ(x) + i∆c − iU(x))α+ η

ṗ = − |α|2 d
dx
U(x)

ẋ =
p

m
(3)

where

U(x) =
∆a

∆2
a + Γ 2

g2(x) ≡ U0g
2(x),

γ(x) =
Γ

∆2
a + Γ 2

g2(x) ≡ γ0g
2(x).

Note that this set of equations coincides with the dynam-
ical equations for a classical massive point dipole moving
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Fig. 1. Intracavity photonnumber (left picture) and force
(right picture) exerted on an atom at rest (solid line) and at
v = 0.5κ/k respectively (dotted line) with ∆a = 7κ, ∆c = 0κ,
κ = Γ = 1κ, η = 1κ, g = 3κ. For comparison we have also plot-
ted the potential U(x) (left picture) and the cavity standing-
wave field (right picture) respectively (dashed lines).

in the cavity field, which we have derived in some previ-
ous work [11]. Clearly these equations can be easily gener-
alised to three dimensions. Of course this model does not
take into account momentum diffusion nor does it include
friction forces as e.g. the Doppler cooling force.

Quite generally there are two limiting cases, for which
the above approximations are valid:

• in the good-cavity-limit g � Γ � κ we have two dis-
tinct time scales for the cavity and the atom respec-
tively. As the lifetime of the upper atomic state is very
small compared with the cavity lifetime the internal
atomic degrees of freedom will adiabatically follow the
local cavity field;
• similarily in the limit of a large detuning |∆a| �
Γ, |∆c|, g the atom is far away from resonance with the
pump field and will not be excited significantly, so that
the upperstate contribution to the atomic populations
can be considered as a small perturbation.

The one dimensional dynamics described by these
equations has been presented at some length in refer-
ence [11]. Nevertheless let us now briefly summarize some
of the key physics contained in the above equations for the
sake of comparison with the 3D model. From equation (3)
it is easy to see the influence of the particle’s position on
the cavity field: on the one hand the field decay is en-
hanced via incoherent photon scattering at a rate γ(x)
and on the other hand the mode frequency is dispersively
shifted through the induced atomic polarisation contained
in the potential term U(x). At the same time U(x) rep-
resents the induced optical potential per photon for the
atomic motion.

It is interesting to see that part of the induced fric-
tion force exerted on the atom can be understood from a
purely classical argument connected to the strong depen-
dence of the intracavity photon-number on the position
of the atom within the cavity standing wave. Let us first
look at the blue detuned case ∆a > 0 and ∆c = 0. Here
the stationary intracavity photon-number has a maximum
for the atom sitting at a node of the cavity standing-wave
field, whereas the potential U(x) possesses a minimum at
the node (see Fig. 1). Assuming a particle slowly moving
along the potential U(x) one gets a certain delay in the

Fig. 2. Intracavity photonnumber (left picture) and force
(right picture) exerted on an atom at rest (solid line) and at
v = 0.5κ/k respectively (dotted line) with ∆a = −7κ, ∆c = 0κ,
κ = Γ = 1, η = 1κ, g = 3κ. For comparison we have also plot-
ted the potential U(x) (left picture) and the cavity standing-
wave field (right picture) respectively (dashed lines).

Fig. 3. Position (upper picture), momentum (middle) and in-
tracavity photon-number for an atom starting at v = 2.5κ/k
with ∆a = 7κ, ∆c = 0κ, κ = Γ = 1, η = 1κ, g = 3κ
(U0 = 1.26κ).

field dynamics with respect to the steady state and the
maximum intracavity photon-number is reached after the
particle has crossed the node and is moving uphill. Accord-
ingly the particle sees a higher intracavity photon-number
and thus a stronger deceleration when going up U(x) than
it sees when running down the potential U(x) (see Fig. 1).
Averaged over a wavelength this leads to a friction force.
The particle is slowed down and finally trapped around a
node of the field (see Fig. 3). Note the increase in the av-
erage intracavity intensity once the particle gets trapped
in a single well directly showing the particle localisation.

The situation is of course reversed for red detuning
∆a < 0. As ∆c = 0 the intracavity photon-number still
reaches a maximum for the atom at a node but now the
potential U(x) has a maximum there (see Fig. 2). If the
particle is slowly moving this leads to an net acceleration
of the atom on average.

This behaviour is again reversed if besides red atomic
detuning the pump field is also red shifted with respect
to the empty cavity resonance. Here the parameter re-
gion where the best cooling occurs lies around ∆c ≈ U0.
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Fig. 4. Intracavity photonnumber for an atom at rest with
∆a = −7κ, ∆c = −1.26κ, κ = Γ = 1, η = 1κ, g = 3κ. For
comparison we have also plotted the potential U(x) (dashed
line).

In this case the intracavity photon-number reaches a max-
imum for the atom at an antinode of the field (see Fig. 4),
which is also a potential minimum. In this case the atom
will be trapped at the antinodes where the atom field cou-
pling is maximal. As a difference to the blue detuned case
the potential has also a minimum as far as the transverse
motion is concerned yielding a 3D trap.

3.2 Full 3D motion in a Gaussian mode

We will now generalize equation (3) to 3 dimensions by us-
ing an approximative 3D-mode function unm(x, y, z) and
substituting d/dx → ∇. In the simplest case we use a
approximated fundamental TEM00-mode

u00(x, y, z) = cos(kz)e
− (x2+y2)

w2
0 , (4)

where w0 denotes the waist of the transverse Gaussian
mode profile. We choose our coordinates such that the
z-axis lies along the cavity and the x and the y-axis lie
perpendicular to the cavity axis.

Of course it is only possible to transversely trap a
particle perpendicular to the cavity axis by choosing red
atomic detuning: ∆a < 0, ∆c ≈ U0 < 0 (see Fig. 5). Blue
detuning would generate a radially repulsive potential hill.
As a typical example shown in Figure 5, we demonstrate
how a particle is transversely cooled and trapped. Every
time it reaches the center of the cavity the intracavity
photon-number gets maximal, since the atom shifts the
cavity into resonance. As the atom is getting localized
deeper in the potential, the intracavity photon-number
approaches its steady state value.

In contrast to this behaviour in Figure 6 we have plot-
ted the time-resolved intracavity photon-number for an
atom traversing the cavity perpendicular to the cavity axis
with a small velocity component along the standing wave
and no detuning between cavity, atom and pump field.

Fig. 5. Position perpendicular to the cavity axis (upper pic-
ture), momentum (middle) and intracavity photon-number for
an atom moving along the transversal Gaussian profile with
U0 = −15.2κ = ∆c, w0 = 20πk−1 and γ0 = 0.1κ.

Fig. 6. Intracavity photon-number for an atom with ∆a =
∆c = 0κ, g = 4κ, η = 1κ, w0 = 200πk−1 and Γ = 0.5κ.
x = (−2000, 0, 0), p = (5, 0, 0.5).

This is a typical choice of parameters used in experimen-
tal setups to detect the presence of atoms traversing the
optical resonator [1,3]. Here we have no net force on the
atom and the dominant effect of the atom is to scatter light
out of the cavity field. One can nicely see the transversal
Gaussian profile in the time-resolved intracavity photon-
number as the atom crosses the cavity superimposed by
the fast oscillations from the longitudinal standing wave
structure.

In the following we show the dynamics of an atom
with only a small component of the atomic velocity per-
pendicular to the cavity axis as it would arise in an ex-
periment with very cold atoms (Figs. 7–10). For the cho-
sen parameters the particle, which is initially unbound,
is finally trapped. Note that at the time when the atom
is trapped within a single potential well the intracavity
photon-number increases to a higher mean value reflect-
ing a stronger effective coupling. This is because the atom
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Fig. 7. Momentum components (upper picture) and intracav-
ity photon-number for an atom moving along the longitudinal
cosine with small velocity components along the transversal
Gaussian profile. U0 = −1.2κ = ∆c, w0 = 10k−1, γ0 = 0.07κ,
x = (−1,−1, 0), p = (0.01, 0.1, 2).

Fig. 8. 3D-position of the atom for the parameters of Figure 7.
Starting at z = 0 the atom moves along the positive z-direction
until it is longitudinally trapped within a single potential well
in the cavity standing-wave field.

Fig. 9. Momentum components (upper picture) and intracav-
ity photon-number for an atom moving along the longitudinal
cosine with small velocity components along the transversal
Gaussian profile. U0 = −1.2κ = ∆c, w0 = 10k−1, γ0 = 0.07κ,
x = (−1, 0, 0), p = (0.1, 0, 1).

Fig. 10. 3D-position of the atom for the parameters of Fig-
ure 9.
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oscillates only weakly around its equilibrium position at an
antinode of the standing wave. Hence the cavity is pulled
into resonance by the atom more effectively than by an
atom, which moves along the standing wave and sees only
a motion averaged smaller coupling. Note that the changes
in the intracavity intensity reflect the fast z-axis oscilla-
tions as well as the slow transverse dynamics of the atom.
This provides an experimental possibility of observing the
trapping process. Alternatively in an experiment, where
relatively fast atoms transversely cross the cavity at al-
most right angle, the effective coupling is different for red
and blue detuning and directly reflects the longitudinal
temperature of the atoms.

4 Coupled motion of two particles
in a Gaussian mode

Obviously even in the case of less than one atom at a time
in the cavity on average one has a finite probability of two
atoms being present at the same time. For many experi-
ments it is sufficient to just consider an effective atom with
a coupling given by the sum of the two atomic couplings
geff = g(x1)+g(x2) instead [16,17]. Obviously in our type
of setup such an approximation is completely useless and
wrong. The combined dynamics shows a much richer and
physically more interesting dynamics as we will show at
some typical examples below. Starting from the simple
equation (3) it is straightforward to increase the number
of particles interacting with the cavity mode, which yields:

α̇=(−κ−γ(x1)−γ(x2)+i∆c−iU(x1)−iU(x2))α+η,

ṗ1 = − |α|2∇1U(x1), ṗ2 = − |α|2∇2U(x2),

ẋ1 =
p1

m
, ẋ2 =

p2

m
, (5)

where x1, p1, x2, p2 describe the positions and momenta
of atom 1 and atom 2 respectively. As both particles in-
teract with the same cavity field they interact with each
other non-linearly and over a large distance via this field.
As a consequence their motion gets strongly correlated.
Figure 11 shows a situation where one atom moves along
the z-axis and the other flies perpendicular to this axis.
Both atoms are trapped for the chosen parameters of suit-
able red detuning so that the cavity is shifted into res-
onance due to the coupling with the atoms. Note that
the intracavity photon-number of the transmitted light
looks completely different compared to the one-atom situ-
ation of Figures 5 and 10. As atom 2 is trapped within
one potential well of the longitudinal cosine the aver-
age intracavity photon-number increases. Hence atom 1 is
accelerated to the center of the transversal Gaussian lead-
ing to an approximately exponential increase in the in-
tracavity photon-number modulated by the fast cosine
oscillations due to atom 2. In the one-atom case the in-
tracavity photon-number would be highest for the atom
approaching the center of the Gaussian profile. Due to the
non-linear interactions between the atoms however we see
a sudden drop in the intracavity photon-number.

Fig. 11. Positions (upper picture), momenta (middle) and in-
tracavity photon-number for two atoms. Atom 2 moving along
the longitudinal cos and atom 1 moving along the transver-
sal Gaussian profile. ∆a = −15κ, w0 = 20πk−1, γ = κ = 1,
x1 = (−20π, 0, 0), x2 = (0, 0, 0), p1 = (0, 0, 0), p2 = (0, 0, 1.5).
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Fig. 12. Positions (upper picture) and intracavity photon-
number for two atoms with ∆a = −15κ, w0 = 20πk−1, γ =
κ = 1, x1 = (−1,−1, 0), x2 = (−1,−1, 0.1), p1 = (0.01, 0.1, 1),
p2 = (0.01, 0.1, 1.5).

Fig. 13. 3D-position of atom 1 and atom 2 for the parameters
of Figure 12. Both atoms are trapped in 3D.

As a second example in Figures 12 and 13 both
atoms are chosen to have momentum mainly along the
standing-wave axis with small transversal components.
Again both atoms are trapped and the time-resolved in-
tracavity photon-number reflects the complex interactions
between the two atoms.

5 Light spectra for a moving atom
in a standing wave

As we have seen in the previous section the intracavity and
hence also the transmitted field contain significant infor-
mation on the particle dynamics. Besides simply looking
at the corresponding intracavity photon-number expecta-
tion values as a function of time, we will in the follow-
ing analyse the transmitted light as well as the scattered
light in more detail and calculate the corresponding spec-
tra [24]. Of course, due to the relatively low number of
scattered photons a direct observation of these spectra
seems experimentally challenging, although the resonance
fluorescence of single atoms and ions has been measured
before [25]. To keep the analysis as simple as possible we
return to the model, where the excited atomic state is
not adiabatically eliminated and the whole system is only
weakly excited.

Following standard procedures [26] we define the time-
dependent spectrum of light by

S(ω, T ) =
1
T

∫ T

0

dt
∫ T

0

dt′e−iω(t−t′)〈E(−)(t)E(+)(t′)〉,
(6)

where E(+)(t) is the positive-frequency part of the electric
field strength and T is the integration time of the detector,
which has to be chosen large enough in order to allow for
a good resolution of the frequency components.

As mentioned before for a weakly driven cavity all ex-
pectation values factorize. This allows to calculate spectra
simply in the following way

Sc(ω − ωP, T ) = N 1
T

∣∣∣∣∣
∫ T

0

dtei(ω−ωP)t〈a(t)〉
∣∣∣∣∣
2

Sa(ω − ωP, T ) = N 1
T

∣∣∣∣∣
∫ T

0

dtei(ω−ωP)t〈σ−(t)〉
∣∣∣∣∣
2

, (7)

where Sc(ω−ωP, T ) is the spectrum of the photons emit-
ted through the cavity mirrors and Sa(ω − ωP, T ) is the
spectrum of the photons emitted out the sides of the cav-
ity centered around the pump-frequency ωP and observed
at a time T . N is a normalization factor

N−1 =
2π
T

∫ T

0

dt
(
|〈a(t)〉|2 +

∣∣〈σ−(t)〉
∣∣2)

assuring that∫ ∞
−∞

dω′(Sc(ω′, T ) + Sa(ω′, T )) = 1,

where ω′ ≡ ω − ωP and we have used
∫∞
−∞ dω′eiω′t =

2πδ(t).
For an atom at rest at an antinode of the standing

wave we recover the well-known double-peaked spectrum
located at the frequencies corresponding to the upper
and the lower eigenenergy E+, E− of the two dressed
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Fig. 14. Cavity spectrum for an atom at rest. g = 10κ, ∆a =
∆c = 0κ, Γ = κ = 1.

Fig. 15. Cavity spectrum for an atom with v = 1κ/k. g = 10κ,
∆a = ∆c = 0κ, Γ = κ = 1.

states [27] with one quantum of excitation plus a delta
peak at ω = ωP representing the pump (Fig. 14)

E+ = −∆c −
∆a −∆c

2
+

1
2

√
(∆a −∆c)2 + 4g(x)2,

E− = −∆c −
∆a −∆c

2
− 1

2

√
(∆a −∆c)2 + 4g(x)2. (8)

For a moving atom new peaks emerge in both the cavity
and the atomic spectrum (Figs. 15 and 16). They can be
assigned to velocity-induced modulation of the intracavity
field and the occupation probability of the excited atomic
state. When the initial transients causing the two-peaked
spectrum have died out, this is the only remaining time-
dependence in the system. A look at Figures 15 and 16
shows that peaks in the cavity spectrum Sc emerge at
ω − ωP = ±2nkv whereas peaks in the atomic spectrum
Sa arise exclusively at ω − ωP = ±(2n + 1)kv with n =
0, 1, 2, ... Qualitatively this can be understood from the
following argument.

Fig. 16. Atomic spectrum for an atom with v = 1κ/k. g = 10κ,
∆a = ∆c = 0κ, Γ = κ = 1.

Due to the atomic motion, the process of photon emis-
sion by the atom is shifted from resonance with the initial
pump frequency, with detuning +kv if the emitted pho-
ton propagates in the same direction as the atom; it is
shifted out of resonance by −kv if the emitted photon
propagates in the opposite direction to the atom. Similar-
ily, the process of photon absorption is out of resonance
with the atom with detuning −kv, if the absorbed photon
propagates in the same direction as the atom; it is out
of resonance with detuning +kv if the absorbed photon
propagates in the opposite direction to the atom. In the
following we discuss the processes involving one photon
exchange between cavity and atom at most:

(i) the photon enters the cavity and is absorbed by the
atom after an odd number of mirror reflections, when
the photon direction has been reversed. If it is finally
transmitted after being emitted by the atom into the
direction of atomic movement it will contribute to the
peak at ω − ωP = 2kv. If it is transmitted after be-
ing emitted by the atom in the opposite direction to
atomic movement it will contribute to the peak cen-
tered at ω − ωP = 0 in the cavity spectrum;

(ii) the photon enters the cavity and is absorbed by the
atom after an even number of mirror reflections, when
the photon is travelling in the same direction as the
atom. If it is finally transmitted after being emitted
by the atom into the direction of atomic movement it
will contribute to the peak at ω−ωP = 0. If it is trans-
mitted after being emitted by the atom in the opposite
direction to atomic movement it will contribute to the
peak at ω − ωP = −2kv;

(iii) the photon enters the cavity and is transmitted without
having been absorbed by the atom. It will contribute to
the central peak at ω − ωP = 0.

Peaks at higher multiples of ±2kv can be explained
by the contribution of processes involving more than one
absorption-emission cycle between cavity mode and atom.
If there is a non-zero detuning between cavity and atom
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Fig. 17. Cavity spectra Sc for v = 0κ/k (upper), v = 0.5κ/k
(middle) and v = 8.9κ/k. ∆a = −10κ, ∆c = −2κ, g = 3κ,
Γ = κ = 1, η = 0.1κ.

photons will be absorbed preferably from one direction
resulting in an asymmetry of the spectrum.

To understand the peaks at odd multiples of the first-
order Doppler shift in Sa one has to note that for the
photon contributing to the atomic spectrum it has to be
emitted out the sides of the cavity, i.e. in our 1D model,
perpendicular to the direction of atomic motion. Therefore
there will be one Doppler shift less compared to the cavity
spectrum resulting in peaks at ω − ωP = ±(2n + 1)kv,
n = 0, 1, 2, ... and the peak at ω − ωP = 0 is missing.

If we choose ∆c or ∆a 6= 0 there will be a force ex-
erted on the atom (see our previous work). In this param-
eter regime we obtain asymmetrical spectra (Figs. 17–20).
Note that there are less sidebands compared to Figures 15
and 16 because of the smaller g, which means that there
are less photon exchanges between the atom and the cav-
ity mode before the photon gets lost through either decay
channel.

The coherent spectra hence contain ample information
on the atom-field dynamics. Although some quantitative
changes especially in the width of the existing peaks are
expected, the qualitative behaviour of these spectra should
remain even for stronger excitation (pumping) of the sys-
tem, where a direct observation seems more feasible. In ad-
dition part of this information can also be extracted from

Fig. 18. Atomic spectra Sa for v = 0κ/k (upper), v = 0.5κ/k
(middle) and v = 8.9κ/k. ∆a = −10κ, ∆c = −2κ, g = 3κ,
Γ = κ = 1, η = 0.1κ.

the intensity correlations (power spectra) of the scattered
light, which also shows sidebands.

6 Comparison between averaged force
and integrated spectra

Naturally the kinetic energy lost or gained by the atom has
to be transferred to the field in some way. An asymmetry
in the spectra implies also a shift of the average energy
of the involved photons. To check this presumption we
compare the asymmetry in the spectra with the net force
exerted on the atoms. In order to get numerical results for
the spectral asymmetry, we have to compute the integrals

∆Sc(ω′, T ) =
∫ ∞
−∞

dω′ω′Sc(ω′, T ),

∆Sa(ω′, T ) =
∫ ∞
−∞

dω′ω′Sa(ω′, T ). (9)

We will speak of a blue-asymmetry if ∆S(ω′, T ) > 0 and
of a red-asymmetry if ∆S(ω′, T ) < 0. In the situation
of a blue-asymmetry the scattered light observed con-
tains more energy than the light pumped into the cavity,
whereas it is less energetical in the red-asymmetry case.
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Fig. 19. Cavity spectra Sc for v = 0κ/k (upper), v = 0.5κ/k
(middle) and v = 8.9κ/k. ∆a = 8κ, ∆c = 0κ g = 3κ, Γ = κ =
1, η = 0.1κ.

In Figures 21 and 22 we compare these asymmetries with
the forces averaged over one wavelength.

In Figure 21 there is a blue asymmetry in the cavity
spectrum for small v related to a cooling force. As this
friction force is cavity mediated there is no asymmetry in
the atomic fluorescence spectrum. For intermediate veloc-
ities kv/κ ≈ 8 the red asymmetry in the atomic spectrum
is almost one magnitude of order larger than the asymme-
try in Sc. This allows to identify the heating force in this
velocity range as directly related to the Doppler force.

In Figure 22 it can be seen that there is a blue asym-
metry in the cavity spectrum, while there is no asymmetry
in the atomic spectrum for the cavity mediated force. For
kv ≈ ∆a the cooling force is mainly Doppler mediated and
accordingly we see a strong blue asymmetry in Sa and a
negligible one in Sc.

Hence this analysis gives us a direct access to the rel-
ative size of cavity mediated friction forces and free space
Doppler cooling. Fortunately the results are in quite good
agreement with the interpretation of the various force con-
tributions, which we found in previous work [11].

Fig. 20. Atomic spectra Sa for v = 0κ/k (upper), v = 0.5κ/k
(middle) and v = 8.9κ/k. ∆a = 8κ, ∆c = 0κ, g = 3κ, Γ = κ =
1, η = 0.1κ.

7 Conclusions

We have shown that cooling and trapping a single particle
in the fundamental TEM00 mode of a high-Q microscopic
resonator seems possible using cold atoms and currently
available cavity technology. The final temperature is only
limited by the cavity finesse and can be much less than the
Doppler limit and in principle be also smaller than the re-
coil limit. In particular the thermal kinetic energy can be
much smaller than the well depth assuring long effective
interaction times. The process of capturing and cooling
the atom can be directly monitored from the transmitted
cavity field. By analysing the spectral properties of this
light one obtains even more detailed information on the
ongoing system dynamics. For this even very weak intra-
cavity fields of the order of one average photon in the mode
can be used rendering this system to be a prototype tool
to investigate quantum dynamics. This might also provide
for a possibility to trap and cool small molecules with a
strong enough dipole moment, without involving sponta-
neous emission and hence avoiding the need for a closed
optical transition.

Let us further point out here, that in a realistic exper-
imental situation one has to take into account gravity. To
get some first estimate of its importance one has to com-
pare the gravitational energy Eg = mg∆x, which an atom
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Fig. 21. Dipole force (upper picture), asymmetry in Sc (mid-
dle) and asymmetry in Sa. ∆a = 8κ, ∆c = 0κ, g = 3κ,
Γ = κ = 1, η = 0.1κ.

gains falling a distance ∆x, with the trapping potential
change ∆U(x). In order to estimate the magnitude of the
additional atomic acceleration we calculate the distance,
for which the gravitational energy amounts to the recoil
energy ER = ~2k2/2m of the atom absorbing or emitting
a single photon. For Rb with an atomic mass of 85au one
gets ∆x = 1700 nm which corresponds to approximately
2λ (λ = 780 nm). As ER is much smaller than ~U0 ≈
~Γ for most experimentally used atomic transitions, the
influence of gravity should be rather small. However,
for an atom falling transversely across the waist of the
Gaussian mode (w0 ≈ 100λ), the gravitational potential
energy can in fact get almost comparable to the trapping
potential U0. Consequently one should choose an exper-
imental setup where the cavity axis is aligned along the
direction of gravitational acceleration, if one is interested
in a long time trapping of the atoms. In this way gravita-
tional effects will not hamper the trapping process.

(h
)κ

-
(h

)κ
-

Fig. 22. Dipole force (upper picture), asymmetry in Sc (mid-
dle) and asymmetry in Sa. ∆a = −10κ, ∆c = −2κ, g = 3κ,
Γ = κ = 1, η = 0.1κ.

Several atoms moving simultaneously in the same
mode will get motionally correlated and can also be
trapped jointly at different nodes of the field. The con-
sequences of the dynamics of one atom conditioned on the
presence of a second atom in a given state could be thor-
oughly investigated in such systems. In comparison to lin-
ear ion traps the smallness of the cavity allows for a much
stronger atom-field coupling, which strongly enhances the
coherent part of the cavity mediated dynamics. Of course
generalisations to even more atoms and especially a Bose-
condensate inside the resonator mode look very promising.
Similarily one could use higher order transverse modes to
confine atoms to decoupled regions in the blue detuned
case.
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25. J.T. Höffges et al., J. Mod. Opt. 44, 1999 (1997).
26. J.H. Eberly, K. Wodkiewicz, J. Opt. Soc. Am. 67, 1252

(1977).
27. C. Cohen-Tannoudji, in Fundamental Systems in Quantum

Optics, Proceedings of the Les Houches Summer School,
Session LIII, edited by J. Dalibard, J.-M. Raimond, J.
Zinn-Justin (North-Holland, Amsterdam, 1992), pp. 1-164.


